top of page

Return to Exercise after Covid 19

Current data suggests that the majority of patients will have short (<2 weeks) self-limiting covid-19 infections that are managed in the community by primary care physicians. For a small yet significant number of these patients however, the road to recovery is more protracted, with patients suffering from “long covid”. One symptom study app revealed that at 4 weeks (1 in 7 patients), and 8 weeks (1 in 20 patients) are still suffering from at least one debilitating covid-19 related symptom (1). This includes fatigue, dyspnoea, chest pain, muscle pains, amongst other multisystem symptoms that can last for many months (2).

The burden of these “long covid” symptoms can be significant to patients, both physically and economically, as many patients are left unable to work, and at risk of losing their livelihoods. In the absence of clear guidance on safe rehabilitation and how to return to exercise, many first contact practitioners are left advising patients to undertake periods of prolonged rest, which risks physical deconditioning. This is particularly important for patients with pre-existing Long-Term Conditions (LTC) or those living in low/middle income countries disproportionately affected by covid-19 due to fewer healthcare resources (3).

We propose that new “return to exercise” guidelines for the general population (non-athletes) are needed to help return patients back to full function and prevent long term disability post covid-19 infection (4). This will require a shift in perspective from medical and non-medical stakeholders to prioritise rehabilitation alongside survivorship and rapidly expand our existing capacity to supervise physical rehabilitation in the community.

● Initially, limit aerobic exercise to walking and carrying out ADL’s. Begin low level stretching and strength exercise; Pilates is perfect for flexibility and strength exercises can minimise further physical deconditioning (8,9).

● Gradual increase in aerobic exercise, limited to 6/10 on a scale of rate of perceived exertion, and strength exercises up to 40% one repetition maximum (1RM) beginning with bodyweight exercises (7,17). Even modest improvement in fitness can reduce symptoms of breathlessness and can aid recovery post covid-19 (12).

● For patients who are unable to tolerate aerobic exercise due to respiratory muscle weakness, or chronic lung disease consider referral for specialist pulmonary rehabilitation or supervised respiratory muscle training.

● Consider targeted nutritional interventions (caloric supplementation or protein intake >1.5 k/kg) in high risk groups. These include patients at risk of a catabolic state, who are elderly, frail or exhibit sarcopenia (15).

1. Long Covid: Who is more likely to get it? [Internet]. BBC News. 2020 [cited 21 October 2020]. Available from:

2. Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L. Management of post-acute covid-19 in primary care. BMJ. 2020;:m3026.

3. Carter C, Thi Lan Anh N, Notter J. COVID-19 disease: perspectives in low- and middle-income countries. Clinics in Integrated Care. 2020;1:100005.

4. Do we need new COVID-19 specific ‘return to exercise’ protocols? | BJSM blog – social media’s leading SEM voice [Internet]. BJSM blog – social media’s leading SEM voice. 2020 [cited 29 September 2020]. Available from:


6. Faghy M, Ashton R, Maden-Wilkinson T, Copeland R, Bewick T, Smith A et al. Integrated sports and respiratory medicine in the aftermath of COVID-19. The Lancet Respiratory Medicine. 2020;8(9):852.

7. Wilson M, Hull J, Rogers J, Pollock N, Dodd M, Haines J et al. Cardiorespiratory considerations for return-to-play in elite athletes after COVID-19 infection: a practical guide for sport and exercise medicine physicians. British Journal of Sports Medicine. 2020;54(19):1157-1161.

8. Barker-Davies R, O’Sullivan O, Senaratne K, Baker P, Cranley M, Dharm-Datta S et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. British Journal of Sports Medicine. 2020;54(16):949-959.

9. Nabavi N. Long covid: How to define it and how to manage it. BMJ. 2020;:m3489.

10. NIHR Evidence – Living with Covid19 – Informative and accessible health and care research [Internet]. 2020 [cited 17 October 2020]. Available from:

11. Question: Should smartphone apps be used clinically as oximeters? Answer: No. – CEBM [Internet]. CEBM. 2020 [cited 30 September 2020]. Available from:

12. Support for Rehabilitation: Self-Management after COVID-19 Related Illness [Internet]. WHO. 2020 [cited 25 September 2020]. Available from:

13. How COVID-19 spreads [Internet]. Centers for Disease Control and Prevention. 2020 [cited 21 Sep 2020]. Available from:

14. About 40 universities report coronavirus cases [Internet]. BBC News. 2020 [cited 29 September 2020]. Available from:

15. Caccialanza R, Laviano A, Lobascio F, Montagna E, Bruno R, Ludovisi S et al. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition. 2020;74:110835.

16. Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine 2020;54:1451-1462.

17. Kravitz L. DEVELOPING A LIFELONG RESISTANCE TRAINING PROGRAM. ACSMʼs Health & Fitness Journal. 2019;23(1):9-15.

18. After-care needs of inpatients recovering from COVID-19 [Internet] NHS England. 2020 [cited 29 September 2020]. Available from:

19. Serafini G, Parmigiani B, Amerio A, Aguglia A, Sher L, Amore M. The psychological impact of COVID-19 on the mental health in the general population. QJM: An International Journal of Medicine. 2020;113(8):531-537.

20. Rogers J, Chesney E, Oliver D, Pollak T, McGuire P, Fusar-Poli P et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. The Lancet Psychiatry. 2020;7(7):611-627.

68 views0 comments


bottom of page